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Abstract—We present a power-lean storage system, where
racks of servers, or even entire data center shipping containers,
can be powered down to save energy. We show that racks
and containers are more than the sum of their servers, and
demonstrate the feasibility of designing a storage system that
powers them up and down on demand; further, we show that
such a system would save an order of magnitude more energy
than current disk-based power-proportional storage systems. Our
simulation results using file system traces from the Internet
Archive show over 44% energy savings, a 5x improvement over
disk-based power management systems, without performance
impact. We explore the tradeoffs in choosing the right unit to
power off/on, and present an automated framework to compute
the optimal power management unit for different scenarios.

I. INTRODUCTION

This is an account of our exploration of low-power storage
designs for the Internet Archive (IA) [3]. The IA is a petabyte-
scale (and growing) online data repository, whose aim is
to archive all of the world’s (public) data. Its collection
currently comprises over 150 billion web pages, as well as
a media collection that includes millions of image and text
files, and hundreds of thousands of audio and video files [3].
Brewster Kahle, the founder of this non-profit organization, is
credited with inventing the concept of data center containers a
full decade before they were adopted and made fashionable
by market giants like Microsoft, Google, Amazon, Yahoo,
etc. [10], [22]. He and his team at IA are now interested in
designing the next-generation power-lean data center container
– the GreenBox [20]; our work is related to this project.

In this paper, we share a key finding from our study - the
role of the power cycle unit (PCU) in storage power manage-
ment. Power-proportional storage solutions power down idle
IT components to save energy; we define the PCU as the unit
chosen for powering down – e.g. disk, server, rack, or data
center shipping container. Current solutions limit themselves
to disk power cycling. Data Center (DC) containerization
offers the unprecendented opportunity of treating an entire
container as a component that can be turned on and off
on demand. Accordingly, we simulated a range of current
solutions and compared them against a model where racks, or
entire containers could be powered down. Our results strongly
indicate that using larger PCUs can result in an order of
magnitude more savings, and should be explored further. We
find that a 20-node PCU results in an 80% improvement in
power savings over single disk PCU, and a 30% improvement
in power savings over single node PCU.

We posit that our findings have value beyond the IA. Firstly,
low-power cloud storage design is of central importance today.
We are in the midst of a data deluge[4] – even as you read
this paper, about 100 GB of data are being generated every
second, principally to be stored on hard disks [21]. Moreover,
this number is doubling every 18 months [29] – faster than
hard disk capacity growth (which doubles every two years [2]);
with the result that the number of disks needed to store the
world’s data is growing exponentially. An energy footprint that
is proportional to the total data stored is, therefore, simply not
sustainable. In this paper, we study the problem of scaling IA’s
storage to meet the demands of the data deluge.

Secondly, we demonstrate the importance of looking beyond
disk-power in designing low-power storage. Disk-power-based
approaches ([14], [18], [25], [30], [16], [24], [26]) overlook
a simple fact: 40% of the power drawn by a data center
goes towards the overheads of cooling and power distribu-
tion [17], and is untouched by current solution designs (disks
themselves, by comparison, consume only about 27% of the
delivered power [30]). The great missed opportunity of cloud
storage is in not doing more to amortize this sizeable chunk
of the power cost of a data center. In this paper, we take a
stab at quantifying the benefit of amortizing this overhead. We
also take the first steps towards designing a practical system
that can spin down entire DC containers.

In the next section, we give some background on the IA.
Section III surveys the power-proportional storage space, and
presents a simple abstraction to describe it. We formally define
PCUs in section IV, and show how to enable larger PCUs.
Section V presents our simulation framework and our results.
We discuss some practical implementation issues in section VI
and conclude in section VII.

II. THE INTERNET ARCHIVE

The IA was founded in 1996 with the mission of providing
“universal access to all knowledge” [3]. The IA’s repository
currently spans billions of webpages, millions of text files,
hundreds of thousands of audio and video files, as well as
a new software archive containing over a hundred thousand
program files [3]. “Universal access” currently translates to
everyone with access to the Internet.

Before we go into further details about the IA, let us briefly
explain why it makes for a uniquely interesting case study in
the area of power-aware cloud storage: Firstly, it epitomizes
the problem of scaling storage to meet the demands of the data
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deluge; its charter, after all, is to store all data. Secondly, the
IA targets long-term preservation of (and immediate access
to) data, rather than high-throughput data analysis and allied
issues; in this it differs from data intensive computing services
(which have tended to dominate the literature of late – ([7],
[8], [11], etc.)). We believe these are orthogonal problems;
once there is a sustainable framework for storing data at
truly vast scales, data management/analysis services can be
supported in a staged fashion. Finally, the IA is a not-for-profit
organization, and operates under constraints (limited resources
- money, people, etc.) that make the problem of scaling it more
challenging; lean operation is not just desirable, but necessary
in this context.

The IA offers two distinct (free) services: Wayback Ma-
chine, and Media Collection. The former offers snapshots of
the World-Wide Web over time (since 1996), while the latter
houses IA’s collection of text, image, audio and video files.
There are some differences in how these two services function;
in this study, we shall focus on IA’s Media Collection.

The IA’s Media Collection (MC) currently spans about 2 PB
of data [5] that include public domain books, images, audio
and video files (not including replicas). The service handles
millions of requests daily, amounting to over 40 TB [19].
Content is uploaded by users as well as IA staff, and is written
to two dedicated “import nodes”; when these nodes fill up,
two new nodes are drafted for the purpose. A monitoring
service ensures that this two-way replication is maintained
in the face of failures. Additional replicas are created based
on item popularity – highly popular elements are manually
replicated and distributed to other nodes for load balancing.

The IA employs about six front-end web nodes to handle
user requests, and over 2500 back-end storage nodes to host
content in their primary data centers. The web nodes main-
tain a content index (a replicated MySQL database), where
elements are indexed by their name and metadata (if any).
User search terms are matched against this index to retrieve
relevant element names. However, the content index maintains
no information about the element location; to retrieve location
information, web nodes broadcast a UDP message containing
the relevant element names to all the storage nodes. Storage
nodes maintain a list in memory of the names of all elements
they store; and if they find a match among the requested
elements, they respond to the broadcast message. The web
node then redirects the user to the storage node, which serves
the requested content. Storage nodes are typically commodity
servers with a low-power CPU and four disks.

It is worthwhile to pause here to partially explain what may
appear surprising choices in the above description (manual
load balancing, lack of location indices, item location by
UDP-broadcasts, etc.). One of the IA’s guiding principles is
simplicity in design [19]. Indeed, this is a necessity given
their lean operations, with a very small staff count, high staff
turnover, and limited resources. Complex systems potentially
mean a higher initial outlay, greater risk of bugs, longer
training time for new staff; all of which are luxuries the IA
can ill-afford. Finally, the reality is that this extremely basic
design has worked satisfactorily for over a decade, and has
gained the IA a wide user base.

III. RELATED WORK: POWER-PROPORTIONAL STORAGE

The principle behind power-proportional storage is that
power should track utilization; live data is usually a very small
fraction of total data in any large-scale storage system, and
it follows that considerable power can be saved if the disks
housing non-live data can be powered down. We present a brief
survey here, and in doing so attempt to distil the principles
that govern this space of solutions. A close examination of
power-proportional storage solutions leads to the observation
that they can be uniquely specified by two basic parameters:

1) Data Localization Target: Power-proportional storage
schemes attempt to localize data accesses to a subset of
the system so that the rest can be powered down. The
data localization target parameter encodes this concept.
For instance, MAID [14] concentrates popular data on
a new set of “cache” disks, while PDC (Popular Data
Concentration) [25] uses a subset of the original disk set
to house the popular data. Power-aware caches [15] at-
tempt to house the working set of spun-down disks in the
cache, to increase their idle time. Write-offloading [24]
is a technique that can layer on top of each of these
solutions to temporarily divert write-accesses from spun-
down disks to spun-up ones, and so is a scheme to localize
write accesses. SRCMap [26] is similar to MAID and
PDC (and additionally uses write-offloading), but is a
more principled version of both. KyotoFS [16] is similar
to write-offloading, but uses the log-structured file system
to achieve write diversions.

2) Architecture: Power-proportional storage systems often
add levels to the storage hierarchy in order to create
disk power-down opportunities. The architecture param-
eter encodes the storage hierarchy of a given solution.
For instance, the standard storage hierarchy puts pri-
mary memory (RAM) ahead of spinning disks. Power-
proportional storage solutions add spun-down disks to the
tail of this hierarchy. MAID uses an additional set of disks
(cache-disks) between memory and the original disk set.
PDC, power-aware caching, SRCMap, write-offloading,
and KyotoFS all use the original disk set, and add no
new levels. Hibernator [30] uses multi-speed disks, as
does DRPM [18]. HP AutoRAID [28] divides the disk-set
into a smaller, high-performance, high-storage-overhead
RAID 1 level, and a larger, low-performance, low-cost
RAID 5 level. PARAID [27] is a power-aware variant of
AutoRAID.

We found that the power-aware storage abstraction specified
by these two parameters encapsulates much of the current
solution space; We simulated this abstraction to explore the
space.

A. Limitation of Disk Power Management Solutions

We built a power-aware storage system simulator, based on
the above abstraction. Section V-A describes the simulator in
detail, but we present a relevant result here in figure 1. For a
2-hour file access trace from IA, we configured the simulator
to mirror one of the MC data centers (see table 4 for a listing
of the parameters). We then simulated a MAID system with a
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Fig. 1: Limited Energy Savings From Disk Power
Management

100GB MAID disk; the result was a 4.8% saving in energy.
Further, we compared this with an idealized case where all of
the back-end disks are powered off for the entire run; this
case represents an ideal for any of the above disk power
management solutions. The ideal case resulted in a saving
of 8.2%. The takeaway here is that disk power management
solutions are limited in their benefit, with an upper limit (for
IA) of less than 10% energy savings. Given the complexity of
several of these solutions, the argument for their adoption is
weak.

B. Beyond Power-Proportionality

As we saw above, the current power-proportional storage
space has inherently limited benefit. The reason is that power-
proportionality alone is not enough; a power-proportional
storage solution could still waste significant amounts of energy
in the following ways:

• As much as 40% of the power consumed by the storage
system goes towards power distribution and cooling over-
heads [17]. While power-proportional storage solutions
might help reduce cooling needs, they leave much of this
overhead untouched. (Compare with disk power, which
accounts for only about 27% of total storage power [30].)

• Storage systems typically replicate data for failure-
resilience and/or performance. Mindful replica placement
could allow some or all replicas to be turned off during
periods of light load.

• Additional consumers of power, that are neglected by
current solutions, include:

1) The data center networking infrastructure
2) Non-disk components of servers, such as CPU, mem-

ory, fan, etc.
3) Non-IT DC components, such as lights, fail-over power

generators, etc.
In essence, an extensive infrastructure exists to support the

storage system – providing services such as power distribution,
cooling, failure-resilience (redundancy), etc. – and any power-
saving solution that neglects to take this into account is
necessarily incomplete. The next section discusses how to go
from power-proportional to power-lean.

IV. POWER CYCLE UNIT

We define the power cycle unit as the resource unit that
the power management scheme operates over. This is the unit
whose power state is manipulated to track utilization. For
example, disk power management schemes manipulate the
disk power state (ON/OFF/possibly low-power states corre-
sponding to lower speeds); CPU power management schemes
manipulate CPU power (typically through frequency tuning).
Our contention in this paper is that larger PCU options, which
have not been explored thus far, promise significantly bigger
energy savings.

A. Key Opportunity: Modularity

The online services hosting space is evolving so rapidly that
data center design standards are a moving target. However,
they are characterized by one guiding principle – modularity.
Rapid expansion needs ushered in the concept of “commodity
servers” – preassembled servers conforming to the most popu-
lar configurations prevalent in industry, ready for purchase off
the shelf, deployable simply by plugging them into the data
center. The concept has now expanded to racks, which are
increasingly becoming the unit of choice for expansion. “Com-
modity racks” have servers, top-of-rack switches ([13]), power
distribution units ([9]), and even in-rack cooling equipment
([6]) pre-installed. Purchasing and commissioning a rack is
now a mere matter of hours – the “rack-and-roll” phenomenon
[12]. Further along this path, entire data centers have now been
commoditized – the data center shipping container – an idea
that originated with the IA’s founder - Brewster Kahle.

This modularity at multiple levels translates to a new
opportunity for power management solutions: we now have the
ability to power down racks, or even entire containers. Each
of these potential PCUs houses not only servers and disks,
but also their corresponding power distribution, networking,
and cooling equipment; powering these down offers energy
savings far beyond the limited disk/server power management
space.

B. Enabling Different PCUs: PCU-Aware Data Organization

While larger PCUs are now physically possible, work is
required to make them practical. Powering down a rack is
not practical if it would result in service interruption or
network disruption. However, as we suggest above, commodity
racks exist that can be introduced into, or taken out of, the
data center network without interrupting or disturbing service.
These have their own network switch, power distribution unit
(often software-controlled), and cooling equipment, and thus
provide fault-isolation from the rest of the network. There
is another issue, however – without some work, rack power-
down opportunities (that is, all of the servers in the rack being
simultaneously idle) are likely to be few. We shall now show
how we could create power-down opportunities for different
PCUs in the IA context, through appropriate data organization.

PCU-aware data organization essentially consists of two
steps:

1) Each data item must be spread (striped/mirrored) across
PCUs, rather than within them. Thus, assuming some
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Fig. 2: Impact of Data Organization Scheme on PCU
Power-Down Opportunities

degree of data redundancy, one or more host PCUs may
be down without impacting the availability of that item.

2) Data access must be localized (as far as possible) to a
subset of the PCUs so that others are idle and may be
powered down. This is achieved by directing accesses to
an item to the more active among its host PCUs.

Figures 3(a), and 3(b) illustrate PCU = Rack, and PCU =
Node, respectively. Note how replica placement changes with
PCU; note, also, the creation of idle PCUs through selective
access of more active replica hosts. Figure 2 illustrates the
importance of PCU-aware data organization. Having set the
PCU to 40-node racks, we varied the data organization unit
(the unit across which replicas are distributed). As expected,
we see that unless replicas are distributed across the given PCU
(40-node racks, in this case), there are no opportunities for
powering them down. When the replicas are distributed across
disks, or nodes, we see plenty of disk and node power-down
opportunities, but no rack power-down opportunity. Thus,
PCU-aware data organization (and retrieval) is key to enabling
larger PCUs.

V. EVALUATION

The aim of this study is to quantify the potential energy
savings from using larger PCUs, for IA and beyond. We wish
to answer the following questions:

1) Internet Archive: What choice of PCU maximizes energy
savings for the Internet Archive without hurting perfor-
mance?

2) Beyond the IA: How is this choice affected by system
parameters such as data organization, request rate, and
cache size?

We describe our methodology, and then present our findings.

A. Methodology

We use simulations to explore the PCU space, for two
reasons: Firstly, for a problem of this scale, a real deployment
study is impractical. Secondly, we wish to explore a number
of different PCU options, and the large combinatorial space of
solutions and their configuration parameters makes it a natural
candidate for a simulation study.

MAID

Back-end

Node
Disk
Rack
Data Item Replica
Powered-Down State

(a) PCU=Rack

MAID

Back-end

Node
Disk
Rack
Data Item Replica
Powered-Down State

(b) PCU=Node

Fig. 3: System Model

1) Simulator: Our simulator models the power-proportional
storage abstraction described in section III, and allows differ-
ent solutions to be simulated by specifying their architecture
and data localization target. The model we work with for our
PCU explorations is a MAID-style system, with PCU-aware
back-end data organization. Given the system specifications,
we simulate the progress of each file request through the
system, recording latency, power consumption, etc. Figure 3
shows the system model with PCU = Rack, and PCU = Node
respectively.

The simulator is written in Python, and comprises less than
2000 lines of code. It is event-based, and takes as input
a trace file of data accessses, as well as a configuration
file that specifies the solution architecture, and the capacity,
power and latency specifications of its components. It then
models an execution of the specified solution on the input
trace, and returns an execution log that details the power
and performance profile of this run. Figure 4 presents the
standard simulation parameters. We validated the simulator in
two ways; we compared its findings with measurements from
a real storage node and ensured that the simulator’s disk-level
storage model is sufficiently accurate. Further we used actual
measurements from an IA production facility to inform our
choice of node and rack transition times and power overheads.

2) Data: For our experiments, we use traces from one
of the MC data centers, which contains 886 storage nodes.
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Parameter Description Value
Data Layout Redundany scheme employed PCU-aware,

2-way mirroring
Disk Power (W) Power consumed by disk when up, down, or transitioning
(Up/Down/Tran) between up and down 10/2/10
Node Power (W) Power consumed by node (over and above that consumed by its
(Up/Down/Tran) disks) when up, down, or transitioning between up and down 200/5/200
Rack Power Overhead (%) Power consumed by rack (over and above that consumed by its
(Up/Down/Tran) nodes) when up, down, or transitioning between up and down 50/0/50
Disk Access Time (ms) Time taken to retrieve data from disk that is up 8
Disk Transition Time (s) Time taken by disk to go between up and down states 6
Node Transition Time (s) Time taken by node (over and above that taken by its disks)

to go between up and down states 30
Rack Transition Time (s) Time taken by rack (over and above that taken by its
(20/40/100/200)-node rack component nodes) to go between up and down states 300/300/420/600
Power Check Interval (hr) The intervals at which all PCUs are examined

and idle ones powered down 0.5
Power Management Start Time (hr) The interval after start of simulation when

power checking begins 0.5
Disk Power Down Threshold An exponentially weighted disk access count threshold

below which the disk is considered idle 10
Cache Size MAID disk capacity 100 GB
Number Of Nodes Actual number from an IA MC data center 886
Number Of Disks/Node Actual number from an IA MC data center 4

Fig. 4: Simulator Parameters (applicable unless specified otherwise)

Attribute Trace 1 Trace 2 Trace 3
Duration 6 hrs 6 hrs 6 hrs
# accesses 6.5m 7m 6.6m
Avg. access size (MB) 1.7 1.3 1.5
Max access size (GB) 7.73 20.74 7.73
Avg # accesses to a node 7797.77 8338.12 7862.95
Max # accesses to a node 110322 184424 120983
# Nodes accessed 833 838 835

Fig. 5: Trace Characteristics

We use access logs for the week of April 3-9, 2009. Unless
otherwise specified, each data point presented in the following
section is the averaged result of running 6-hour traces from
three different days of this week (a Monday, Tuesday, and
Friday, the same set of hours being picked from each day).
Figure 5 gives details of these traces.

The traces are HTTP logs, and specify, for each file access,
the access time, the file (name, size), as well as the host storage
node (id, disk number). These accesses are essentially cache-
misses from the front-end web nodes. Recall that file location
(for a cache-miss) is obtained by UDP broadcast to all the
storage nodes. These accesses, thus, provide the storage node
data as well. However, we manipulate this information slightly
to conform to different data organization layouts. Given a
data organization scheme – PCU-aware, 2-way mirroring, for
example – we statically map each disk to a “mirror disk” such
that the mirror disk is on a different PCU from the original
disk. An access request to any item on either disk is then
directed to the more active of the two. Support for dynamic,
per-file mapping is planned in future work.

B. Results

1) Internet Archive:
Question: What is the optimal PCU size for the IA? For

the parameter set listed in table 4, which is intended to
approximate the IA store, we ran a 24-hour trace (from April
3, 2009). Our findings are shown in figure 6. Figure 6(a) shows
that as we increase PCU size, a sweet-spot (minimum) is
achieved for energy at the two configurations PCU = 20-node
rack, and PCU = 40-node rack. At these configurations, we
obtain energy savings over disk power management solutions
of over 44%, and over node power management solutions of
30%. Further, figure 6(b) shows that the 20-, and 40-node PCU
configurations actually perform somewhat better than the node
PCU configuration! Each set of three bars in this graph shows
the highest latency seen in the 99.9-, 99.99-, and 99.999-
th percentile of accesses respectively (left-to-right). We see
that all configurations have acceptable performance, with over
99.9% accesses seeing no delay. Figure 6(c) explains why the
rack PCU configurations perform better than the node PCU
configuration. For each configuration, it tracks the number of
PCUs, nodes, and disks that are powered down over the length
of the simulation. We see that for all of the configurations with
PCU > node, the number of PCUs down stays constant after
the initial power check interval. This means that no access
goes to a powered-down rack, with the result that rack power
downs have no performance penalty!

Note: the remaining results all use three 6-hour traces to
generate each data point.
Question: How does this choice of optimal PCU depend
on Rack Power Overheads? Clearly, the higher the power
overhead of a rack, the more energy savings obtained by
powering it down. For our results above, we used a rack
power overhead of 50%; so, for example, a 40-node rack
would have a power overhead of 50

100 ∗ (40 ∗ 200) = 4000W .
We chose this as a reasonably conservative value, given the
industry rule-of-thumb that 1W of cooling is needed for every
Watt going to servers (ie.. a 100% overhead). However, we
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Fig. 6: Computing Optimal PCU Size for the Internet
Archive

would like to compute the minimum rack power overhead
at which it becomes worthwhile to consider PCUs that are
greater than node. Figure 7 shows that this minimum overhead
value is close to 25%. At overhead values of 5% or less, we
actually waste energy if we power down racks. However, at
overhead values of 25% and over, a 20-, or 40-node rack is
the optimal PCU for the IA, with energy savings increasing
with overhead.
Question: How does this choice of optimal PCU depend
on Rack Transition Time? As rack transition time increases,
we expect that the energy savings from powering down the
rack decreases. Therefore, we might expect a maximum rack
transition time beyond which powering down racks does not
make sense. However, as we see in figure 8, this limit is not
reached for the transition time values we explored. Even at a
conservative estimate that it takes 10 minutes to power up a

40-node rack – this is in addition to the power-up time of its
component nodes – we see that the 40-node rack continues to
be an optimal PCU choice for the IA. We also found (though
not shown here) that halving, or doubling the transition
time does not affect performance significantly – which is in
agreement with our earlier observation that no accesses hit
powered-down racks.

2) Beyond Internet Archive:
Question: How does Optimal PCU Choice depend on Data
Organization Scheme? We now look beyond IA’s two-way
mirroring, and see how PCU choice is affected by different
data organization schemes. Figure 9 shows the result of
running the same trace over a succession of data striping
schemes – (n,m), where n is the total number of chunks
in a stripe, and m is the least number of chunks needed to
reconstruct the data item. Each configuration is represented
as nm PCU-size, where PCU-size can either be node,
or 40-node rack. We see that energy savings increase as
overhead (n/m) increases (the higher the overhead of the
striping scheme, the more redundant fragments there are
whose host PCUs can be powered down), and decrease as
fragmentation rate (n) increases (the higher the fragmentation
rate, the bigger the set of PCUs each data item is spread over;
thus increasing inter-PCU dependencies, and reducing PCU
power-down opportunities). As a concrete example, we see
that energy savings increase as we increase overhead from
(6,4) to (6,3). On the other hand, energy savings decrease
as we increase fragmentation from (2,1) to (6,3) to (8,4).
We also see that, for all striping schemes, setting the PCU
to node leads to having higher node and disk down-counts;
consequently, node power cycling has more latency spikes
than rack power cycling.

Question: How does Optimal PCU Choice depend on
Cache Size? We wanted to isolate the effect of the cache
size (note that ‘cache’ here refers to MAID disks) on PCU
power-down opportunities. In our experiments with varying
cache sizes, we observed the surprising result (omitted here
due to space constraints) that cache size has negligible impact
on energy savings. The explanation is that our traces consist
of accesses that missed front-end caches; this workload,
therefore, is inherently resistant to caching.

Question: How does Optimal PCU Size depend on Access
Rate? Finally, we partially address the question of how
optimal PCU size depends on file access rates by looking at
the results from two different traces, one having 1.4 times
the original access rate (figure 10(a)), the other 0.4 times
the original access rate (figure 10(b)). While this doesn’t
comprise a wide range of access rates, it does show that
energy savings increase when access rate is lower, but the
choice of optimal PCU size does not change over the access
rates we explored.

Finally, though we omit the results due to space constraints,
we also conducted experiments to confirm that our results are
not artifacts of simulator-specific parameters such as power-
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Fig. 7: Effect of Rack Power Overhead on Optimal PCU Size
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Fig. 8: Effect of Rack Transition Time on Optimal PCU Size

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

21_NODE

21_RACK

43_NODE

43_RACK

63_NODE

63_RACK

64_NODE

64_RACK

84_NODE

84_RACK

E
n

e
rg

y
 (

k
W

h
)

(a)

10^0

10^1

10^2

10^3

10^4

10^5

10^6

21_NODE

21_RACK

43_NODE

43_RACK

63_NODE

63_RACK

64_NODE

64_RACK

84_NODE

84_RACK

L
a

te
n

c
y
 (

m
s
)

< 100 in 10^5 accesses
< 10 in 10^5 accesses

< 1 in 10^5 accesses

(b)

 0

 10

 20

 30

 40

 50

 60

21_NODE

21_RACK

43_NODE

43_RACK

63_NODE

63_RACK

64_NODE

64_RACK

84_NODE

84_RACK

%
 P

C
U

/N
o

d
e

/D
is

k
 d

o
w

n

pcu actual
node actual
disk actual

(c)

Fig. 9: Impact of Data Organization Scheme on Optimal PCU Size
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Fig. 10: Effect of Access Rate on Optimal PCU Size
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check interval, disk-down threshold, and disk power-down
threshold.

VI. DISCUSSION

We have examined PCU choices for a range of different
storage system settings; our findings strongly suggest that disk
power management is a dead end, and larger PCUs are a very
promising direction to follow. However, there are some issues
we did not address during our discourse; we examine some of
them here.

• Power Usage Effectiveness (PUE): PUE is defined as
Total power

IT power , and the industry average is 2.0 to 2.5 [23].
As figure 7 shows, rack-sized PCUs improve energy
efficiency for facilities with PUE exceeding 1.25, while
node-sized PCUs suffice for more efficient facilities.
Modern green data centers have reported PUE values as
low as 1.07 [1]; a feat achieved by using outside air
for cooling (free cooling), thus obviating the need for
energy-hungry chillers. We note that in these cases the
node is the optimal PCU – moving to a larger PCU has
scant benefit. However, the vast majority of existing data
centers do not fall into this category – they use chillers
either because outside temperatures do not permit free
cooling, or because their legacy design does not allow it.

• Powering Down versus Over-Subscription: An oft-made
argument against power-aware storage solutions is that it
is economically better to put idle equipment to use rather
than to power it down. This argument breaks down in
a large-scale data storage scenario. PB-scale data stores,
even at the outer limit of their bandwidth capabilities,
cannot serve all of the data they host simultaneously. As
data continues to grow, it is necessary to separate the
problem of storage from computation; the former must
emphasize scalability and hence power-awareness. The
latter can be designed on top of the storage solution in a
staged fashion.

VII. CONCLUSION

Information is the currency of our times, and as the volume
of digital data continues to grow exponentially, designing
power-lean, sustainable storage systems assumes central
importance. We show that the current power-proportional
storage space has limited potential, and that in order to scale
with the data, we need to go beyond power-proportionality
towards power-lean systems that address the overheads of
cooling, power distribution, and networking. We show how
to design systems that can power cycle over racks, or even
entire data center containers, with an order of magnitude
improvement in energy savings.

This work was supported by Internet Archive, AFRL, NetApp, Microsoft,
NSF TRUST
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